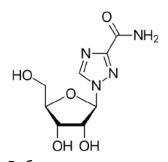


Аналитические возможности жидкостного хроматографа Маэстро ВЭЖХ с детектором на диодной матрице на примере определения примесей в лекарственном препарате рибавирин согласно ФС.2.1.0031.15

Яшин А. Я. к. х. н., ведущий инженер отдела исследований и разработок, ООО Интерлаб, Россия, Москва

Ключевые слова

Жидкостная хроматография, рибавирин, примеси, лекарственный препарат, детектор на диодной матрице


Резюме

Показаны аналитические возможности МаэстроВЭЖХ на примере определения родственных примесей в рибавирине. Определено содержание примесей в лекарственном препарате рибавирин согласно ФС.2.1.0031.15

Рибавирин - синтетический аналог нуклеозидов с выраженным противовирусным действием. Обладает широким спектром активности против различных ДНК и РНК вирусов. Препарат используется для лечения тяжёлой инфекции, вызванной респираторно-синцитиальным вирусом, вирусным гепатитом С, а также других вирусных инфекций. Рибавирин активен в форме метаболита, который имеет структуру, сходную с пуриновым нуклеотидом. Показана эффективность рибавирина против вирусов гриппа и многих вирусных геморрагических лихорадок. В США и Великобритании рибавирин назначают орально для лечения гепатита С в сочетании с пегилированными интерферонами. Рибавирин в сочетании с пэгинтерферонами признан современным стандартом терапии хронического гепатита С в развитых странах.

В Государственной Фармакопее РФ XIII издания имеется фармакопейная статья ФС.2.1.0031.15, в которой прописано определение родственных примесей в лекарственном препарате рибавирин методом ВЭЖХ с УФ детектированием.

В этой работе предлагается использовать жидкостный хроматограф МаэстроВЭЖХ с детектором на диодной матрице.

Рибавирин

Экспериментальная часть

Для анализа использовали чистые вещества фирмы Fluka:

Вода бидистиллированная;

Кислота трифторуксусная, ч.д.а.

Метанол для ВЭЖХ;

Препарат рибавирин куплен в розничной аптечной сети.

Инструменты:

Жидкостный хроматограф «МаэстроВЭЖХ» с детектором на диодной матрице

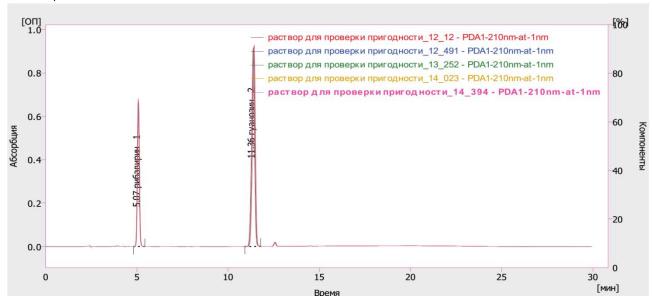
Хроматографические условия:

Колонка Кромасил С18 5 мкм 250 х 4.6 мм

Скорость потока 1 мл/мин

Длина волны 210 нм

Подвижная фаза: Раствор А: 0,1% раствор трифторуксусной кислоты; Раствор В: смесь раствора А и метанола (90:10); Градиент:

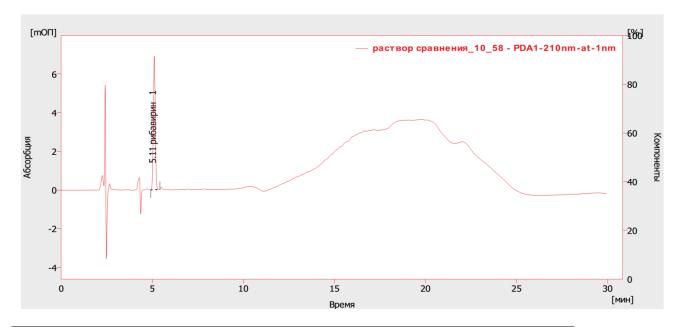

Время, мин	A, %	В, %
Исходный	90	10
5	90	10
15	0	100
17	0	100
19	90	10
35	90	10

Результаты и обсуждения

Согласно ФС.2.1.0031.15 необходимо приготовить испытуемый раствор (0,02 г препарата рибавирин растворить в 100 мл раствора А), раствор сравнения (испытуемый раствор разбавить в 200 раз раствором А) и раствор для проверки пригодности хроматографической системы (5мг препарата рибавирин и 5 мг гуанозин растворить в 50 мл раствора А).

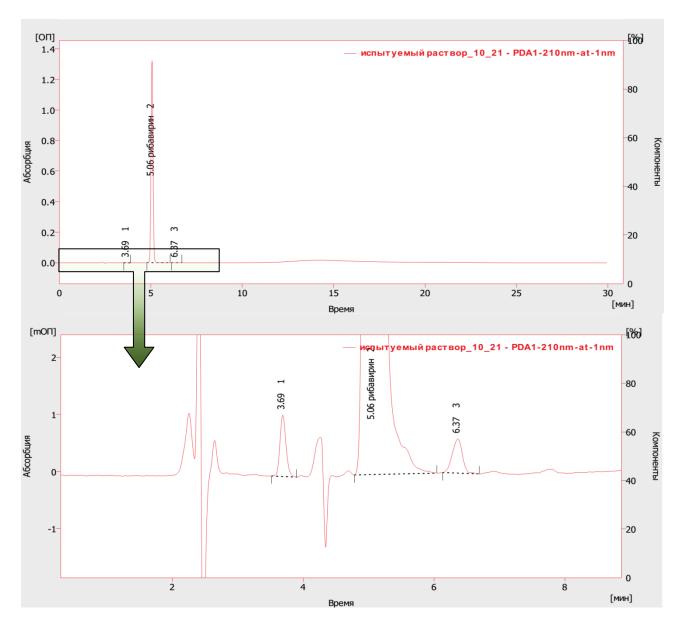
Ниже приведено наложение нескольких хроматограмм раствора для проверки пригодности хроматографической системы. Согласно ФС.2.1.0031.15 хроматографическая система считается пригодной, если выполняются следующие условия:

- если разрешение (R) между пиками рибавирина и гуанозина не менее 10;
- относительное стандартное отклонение площадей пиков рибавирина и гуанозина должно быть не более 2,0 %.


	Время уд. [мин]	Разрешающая способность [R]	Название вещества
1	5.067		рибавирин
2	11.360	24.216	гуанозин

	Площадь пика [mOП.сек]		
	Рибавирин	Гуанозин	
CKO, %	0.72	0.70	
Среднее значение	5067.076	10393.345	
1	5016.194	10284.358	
2	5045.121	10366.508	
3	5073.406	10398.277	
4	5100.755	10454.216	
5	5099.905	10463.369	

В нашем примере все требования к пригодности хроматографической системы выполняются.


Далее были сняты хроматограммы испытуемого раствора и раствор сравнения.

Хроматограмма раствора сравнения:

	Время уд. [мин]	Площадь [тОП.сек]	Высота [тОП]	Название вещества
1	5.107	52.033	6.929	рибавирин

Хроматограмма испытуемого раствора:

	Время уд. [мин]	Площадь [тОП.сек]	Высота [тОП]	Площадь [%]	Название вещества
1	3.687	6.911	1.076	0.1	
2	5.060	9885.962	1323.120	99.9	рибавирин
3	6.367	6.407	0.601	0.1	

Согласно ФС.2.1.0031.15 на хроматограмме испытуемого раствора площадь пика каждой единичной примеси должна быть не более половины площади пика на хроматограмме раствора сравнения (0,25 %). Сумма площадей пиков всех примесей на хроматограмме испытуемого раствора должна быть не более удвоенной площади пика рибавирина на хроматограмме раствора сравнения (1,0 %). (см. сводную таблицу).

Сводная таблица результатов

Требования ФС.2.1.0031.15	Полученные результаты
На хроматограмме испытуемого раствора площадь пика каждой единичной примеси	На хроматограмме испытуемого раствора площадь пика каждой единичной примеси более чем в 3,5
должна быть не более половины площади пика	раза меньше половины площади пика рибавирина
на хроматограмме раствора сравнения (0,25 %)	на хроматограмме раствора сравнения
Сумма площадей пиков всех примесей на	Сумма площадей пиков всех примесей на
хроматограмме испытуемого раствора должна	хроматограмме испытуемого раствора боле чем в
быть не более удвоенной площади пика	7 раз менее удвоенной площади пика рибавирина
рибавирина на хроматограмме раствора	на хроматограмме раствора сравнения
сравнения (1,0 %)	

Выводы

Жидкостный хроматограф Маэстро ВЭЖХ с диодноматричным детектором пригоден для определения родственных примесей в лекарственном препарате рибавирин согласно ФС.2.1.0031.15. Прибор можно рекомендовать фармацевтическим предприятиям, выпускающим данный лекарственный препарат.

За дополнительной информацией обращайтесь в компанию Интерлаб